{’?; Shakuntala Krishna Institute Of Technology

Subject — Digital Electronics & Computer
Organization

Top — 15 Questions

=

Explain different number systems (Binary, Octal, Decimal, Hexadecimal). Write methods of
conversion from one system to another.

2. Perform binary arithmetic operations (addition, subtraction using 1’s and 2’s complement).
3. State and prove De-Morgan’s Theorems with truth tables.

4. What is a Karnaugh Map (K-Map)? Explain how Boolean expressions are minimized using K-
Map (2-variable, 3-variable, 4-variable examples).

Explain the working of Half Adder and Full Adder with truth tables and logic diagrams.
Explain Half Subtractor and Full Subtractor with truth tables and logic diagrams.

Explain multiplexer and demultiplexer with truth tables and logic diagrams.

Explain decoder and encoder with examples.

w 0 N o W

What is a Flip-Flop? Explain SR, JK, D, T, and Master-Slave Flip-Flops with diagrams and truth

tables.

10.Write the characteristic equations and characteristic tables of SR, JK, D, and T flip-flops and
Explain conversion of flip-flops (SR to JK, JK to D, D to T, etc.) with proper methods.

11.Explain the difference between edge triggering and level triggering with diagrams.

12.What is a register? Explain classification of registers and working of a shift register with
diagrams.

13.What is a counter? Differentiate between asynchronous (ripple) and synchronous counters
with examples.

14.Explain the basic cell organization of static RAM (SRAM) and dynamic RAM (DRAM) with
diagrams.

15.What is cache memory? Explain cache memory organization and virtual memory organization

with examples.

1. Explain different number systems (Binary, Octal, Decimal, Hexadecimal). Write methods of
conversion from one system to another.
Number System
A number is a mathematical object used to count, measure, and label. Numbers are
represented by a string of digital symbols. A number system of base r is a system that uses
distinct symbols for r digits. That is in a positional baser numeral system r basic symbols (or
digits) corresponding to the first 7 natural numbers including zero are used. To generate the
rest of the numerals, the position of the symbol in the figure is used. The symbol in the last
position has its own value, and as it moves to the left its value is multiplied by r. There are
four systems of arithmetic used in digital system. These systems are Decimal, Binary,

Hexadecimal and Octal.

System Base | Digits

Binary 2 01

Octal 8 01234567

Decimal 10 0123456789
Hexadecimal |16 0123456789ABCDEF

Decimal Number System: The Decimal number system has a base ten. This system uses ten
distinct digits012 3456 7 8 9 to form any number. Each digit can be used individually or
they can be grouped to form a numeric value.Each of decimal digits, 0 through 9, has a place
value or weight depending on its position. The weights are units, tens, hundreds, thousands
and so on. The same can be expressed as the powers of its base as 100, 101, 102, 103 ---
etcfor the integer partand 10-1, 10-2, 10-3, 10-4 --- etc for the fractional part. 100, 101,
102, 103 --- etcrepresents the units, tens, hundreds, thousands etc. and the quantities 10-1,
10-2,10-3, - etc represents one tenth, one hundredth, one thousandth etc. The integer
part and fractional parts are separated by a decimal point. The position weights in decimal

system is given as

10% | 10% | 10' | 10° - 107t {1072 1073|107

Example:
(i) 7693 = 7x10°4+6x1024+9x10' 4+3x10°
= 7x1000+6x1004+9x10+3x1
= 7000 + 600 + 90 + 3
(i) 193646 = 1x10°4+9x102+3x10'+6%x10°4+4x10"1 +6x%x 102
= 1000 + 900 + 30 + 6 + 0.4 + 0.06

Binary Number System: The base of the binary number system is two. It uses the digitsO and
1 only. The two digits 0 and 1 are called a bit. The place value of each position can be
expressed in terms of powers of 2like20,21, 2 2 ,etc for integer partand2-1,2-2,2-3
,etc for the fractional part. A binary point separates the integer and fractional part. The

position weights in the binary is given as

23 22 21 20 . 21 22 23 24

Example : 10112 = (1x23) + (0x22) + (1x21) + (1x20) =8+ 0+ 2 + 1= 1110

4 bit binary word = nibble
8 bit binary word = byte
16 bit binary word = word

32 bit binary word = double word

Octal Number System: The base of the octal number system is eight. It uses eight digits 01 2
3456 and 7 to form a number. The place value of each position can be expressed in terms
of powers of 8 like 80,8 1, 8 2 ,etc for integer partand 8 -1, 8 -2, 8 -3 ,etc for the
fractional part. An octal point separates the integer and fractional part. Sets of 3-bit binary
numbers can be represented by octal numbers (000, 001, 010,011, 100, 101,110,111) and
this can be conveniently be used for entering data in the computer. The position weights in

the octal system is given as

83 82 81 80 . 81 82 83 84

Example : 7458 = (7x82) + (4x81) + (5x80) =448 + 32 + 5=48510

Hexadecimal Number System: The Hexadecimal number system has a base of 16. It has 16
distinct digit symbols. It uses the digits 0123456789 plustheletters ABCD E and F.
Any hexadecimal digit can be represented by a group of four bit binary sequence.That is the
Hexadecimal numbersare represented by sets of 4-bit binary sequence (0000, 0001,0010,
0011, 0100,0101,0110,0111,1000,1001,1010,1011,1100,1101,1110,1111). The position

weight in the hexadecimal number system is given as

163 | 162 | 16! | 16° : 1671 1672|1673 | 167*

Number System

Decimal | Binary Octal Hexadecimal
(Base 10) | (Base2) | (Base8) | (Base 16)
0 0000 00 0

1 0001 01 1

2 0010 02 2

3 0011 03 3

4 0100 04 4

5 0101 05 5

6 0110 06 6

7 0111 07 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Example : 2F16 = (2x161) + (15x160) =32 + 15 =4710

2. Perform binary arithmetic operations (addition, subtraction using 1’s and 2’s complement).

Arithmetic operations such as addition, subtraction, multiplication and division can be
performed on binary numbers.

Binary addition: The addition of two Binary numbers is very similar to addition of two
decimal numbers. It is key to binary subtraction, multiplication and division.The following
rules are followed while adding two binary numbers.

Augend + Addend | Carry Sum Result
(A) (B) (A) (B)

0 + 0 0 0 0

0 + 1 0 1 1

1 + 0 01 1

1 + 1 1 0 10 ;readasOwithacarry1
1 +1 +1 1 1 11 ;readas1withacarryl
Example:

1. Add the binary numbers (i) 1011 and 1110 (ii) 10.001 and 11.110

(i) Binary Number Equivalent Decimal

111 Carry

1011 11
+ 1110 14
Sum= 11001 25

Binary Number

(ii)

+

Equivalent Decimal

1 <+— Carry

11050051 2.125

A4 5150 + 3.750
Sum=101.111 5.875

Binary subtraction: The subtraction of two Binary numbers is very similar to subtraction of

two decimal numbers. Subtraction is the inverse operation of addition. The following rules are used

in subtracting two binary numbers.

Minuend - Subtrahend Difference Borrow
0 0 0 0
1 0 1 0
1 - 1 0 0
0 - 1 1 1 read as difference 1 with borrow 1

Example:

1. Subtract the binary numbers (i) 101 from 1001 (ii) 11and 10000

(i) Binary Number Equivalent Decimal

1001 9
- 101 -5
Difference = 100 4
(i) Binary Number

Equivalent Decimal
10000 16

11 -3

Difference = 1101 13

Subtraction using 1’s Complement

Example: 7-5
e Minuend =0111 (7 in decimal)
o Subtrahend = 0101 (5 in decimal)

Step 1: Take 1’s complement of subtrahend

0101 = 1010

Step 2: Add minuend and complemented subtrahend

1’s Complement of -
Minuend|+ = |Sum
Subtrahend
" 1000
0111 + 1010 =
1

Step 3: End-around carry (1) = add back

Car]
Sum (without carry)|+ =|Final Result
ry
10 || |
0001 (from 10001) |+ =(0010
00

Answer = 0010 = +2
Subtraction using 2’s Complement
Example: 7-5
Minuend = 0111
o Subtrahend =0101
Step 1: Find 2’s complement of subtrahend

0101 = 1010+1=1011

Step 2: Add
- 2s Complement of N
Minuend|+ =|Sum
Subtrahend
0111 |+|[1011 =[10010

Step 3: Discard carry - 0010

Answer = +2

3. State and prove De-Morgan’s Theorems with truth tables.

DeMorgan’s Theorems are basically two sets of rules or laws developed from the Boolean
expressions for AND, OR and NOT using two input variables, A and B. These two rules or theorems

allow the input variables to be negated and converted from one form of a Boolean function into an

opposite form.

DeMorgan’s first theorem states that two (or more) variables NOR"ed together is the same as the

two variables inverted (Complement) and AND’ed, while the second theorem states that two (or

more) variables NAND ed together is the same as the two terms inverted (Complement) and OR’ed.
That is replace all the OR operators with AND operators, or all the AND operators with an OR

operators.

DeMorgan’s First Theorem

DeMorgan’s First theorem proves that when two (or more) input variables are AND’ed and negated,
they are equivalent to the OR of the complements of the individual variables. Thus the equivalent
of the NAND function will be a negative-OR function, proving that A.B = A+B. We can show this

operation using the following table.

Verifying DeMorgan’s First Theorem using Truth Table

Inputs Truth Table Outputs For Each Term

B A AB AB A B A+B
0 0 0 1 1 1 1
0 1 0 1 0 1 1
1 0 0 1 1 0 1
1 1 1 0 0 0 0

We can also show that A.B = A+B using logic gates as shown.

DeMorgan’s First Law Implementation using Logic Gates

NAND
A AB AB
S
A
A —
A+B
B
=

Negative-OR

The top logic gate arrangement of: A.B can be implemented using a standard NAND gate with
inputs A and B. The lower logic gate arrangement first inverts the two inputs producing A and B.
These then become the inputs to the OR gate. Therefore the output from the OR gate

becomes: A+B

Then we can see here that a standard OR gate function with inverters (NOT gates) on each of its
inputs is equivalent to a NAND gate function. So an individual NAND gate can be represented in this

way as the equivalency of a NAND gate is a negative-OR.

DeMorgan’s Second Theorem

DeMorgan’s Second theorem proves that when two (or more) input variables are OR’ed and
negated, they are equivalent to the AND of the complements of the individual variables. Thus the
equivalent of the NOR function is a negative-AND function proving that A+B = A.B, and again we can

show operation this using the following truth table.

Verifying DeMorgan’s Second Theorem using Truth Table

Inputs Truth Table Outputs For Each Term

B A A+B | A+B A B A.B
0 0 0 1 1 1 1
0 1 1 0 0 1 0
1 0 1 0 1 0 0
1 1 1 0 0 0 0

We can also show that A+B = A.B using the following logic gates example.

DeMorgan’s Second Law Implementation using Logic Gates

P

Negative-AND

The top logic gate arrangement of: A+B can be implemented using a standard NOR gate function
using inputs A and B. The lower logic gate arrangement first inverts the two inputs, thus
producing A and B. Thus then become the inputs to the AND gate. Therefore the output from
the AND gate becomes: A.B

Then we can see that a standard AND gate function with inverters (NOT gates) on each of its inputs
produces an equivalent output condition to a standard NOR gate function, and an
individual NOR gate can be represented in this way as the equivalency of a NOR gate is a negative-

AND.

Although we have used DeMorgan’s theorems with only two input variables A and B, they are

equally valid for use with three, four or more input variable expressions, for example:

For a 3-variable input

A.B.C = A+B+C
and also
A+B+C=A.B.C

For a 4-variable input

A.B.C.D = A+B+C+D

and also

A+B+C+D =A.B.C.D

and so on.

DeMorgan’s Equivalent Gates

We have seen here that by using DeMorgan’s Theorems we can replace all of the AND (.) operators
with an OR (+) and vice versa, and then complements each of the terms or variables in the

expression by inverting it, that is 0’s to 1’s and 1’s to 0’s before inverting the entire function.

Thus to obtain the DeMorgan equivalent for an AND, NAND, OR or NOR gate, we simply add
inverters (NOT-gates) to all inputs and outputs and change an AND symbol to an OR symbol or

change an OR symbol to an AND symbol as shown in the following table.

DeMorgan’s Equivalent Gates

Standard Logic Gate DeMorgan’s Equivalent Gate

A — A.B
B —
AND
Negative-NOR
. -
— A
A _)ﬁ A+B
B — | -
8 B
NAND
Negative-OR

A.

g
4
:

Negative-NAND

A.

"
:

Negative-AND

Then we have seen in this tutorial about DeMorgan’s Thereom that the complement of two (or
more) AND’ed input variables is equivalent to the OR of the complements of these variables, and
that the complement of two (or more) OR’ed variables is equivalent to the AND of the

complements of the variables as defined by DeMorgan.

4. What is a Karnaugh Map (K-Map)? Explain how Boolean expressions are minimized using K-
Map (2-variable, 3-variable, 4-variable examples).

The Boolean theorems and the De-Morgan's theorems are useful in manipulating the logic
expression. We can realize the logical expression using gates. The number of logic gates
required for the realization of a logical expression should be reduced to a minimum possible
value. One of the methods used to minimize the logical expression is K-map method. A
Karnaugh map provides a pictorial method of grouping together expressions with common
factors and therefore eliminating unwanted variables. The Karnaugh map can also be
described as a special arrangement of a truth table. The K-map is a graphical device used to
simplify a logical equation or to convert a truth table to its corresponding logic circuitin a
simple, logical method. It is also known as Veitch diagram. A K-map is a diagram made up of
squares and may be considered to be the graphic representation of the minterm canonical
form. Each minterm is represented by a cell, and the cells are assembled in an orderly
arrangement such that adjacent cell represent minterms which differ by one variable. The
number of cells in a K-map depends upon the number of variables in the Boolean expression.
Two variables map contain four cells, three variables map contain eight cells and n variables
map contain 2n cells. Each row and column of the map is assigned by 0’s and 1’s as shown in

figure.
B BC
A 0 1 A 00 01 11 10
0 1 0 1 3 2
o| 00 01 0| 000 001 011 | 010
2 3 B 5 7 6
1{ 10 11 1| 100 101 111 110
Two Variables K-map Three Variables K-map
With cell number with cell number

This method can be done in two different ways, as discussed below.

Sum of Products (SOP) Form It is in the form of sum of three terms AB, AC, BC with each
individual term is a product of two variables. Say A.B or A.C or B.C. Therefore such
expressions are known as expression in SOP form. The sum and products in SOP form are not
the actual additions or multiplications. In fact they are the OR and AND functions. In SOP
form, O represents a bar and 1 represents an unbar. SOP form is represented by 5.

Boolean expression in SOP may or may not be in a standard form. First the expression is
converted into SOP and then, 1’s are marked in each cell corresponding to the minterm of

expression and the remaining cells are marked with 0’s.

Examples of SOP: 1. K-map for the Boolean expression Y (4, B, C) =; +B

In SOP form AB + AB + AB
b, Ju L
00 01 14
B
A 0 1
o g e g Z m(0,1,3)
m; ms
1 0 1
Result of AB + AB + AB is A+B

2. K-map for the Boolean expression Y(4,B,C) = AB + BC + ABC

In SOP form ABC + ABC + ABC + ABC
Ldd: el Bl didd
111 110 010 001

BC
A 00 01 11 10
m my
o ™| , LI Z m(1.2,6,7)
my mg my Mg
1 1 1
Result of ABC + ABC + ABC + ABC is AB + BC + ABC

Product of Sums (POS) Form It is in the form of product of three terms (A+B), (B+C), or (A+C) with
each term is in the form of a sum of two variables. Such expressions are said to be in the product of

sums (POS) form. In POS form, O represents an unbar and 1 represents a bar. POS form is

represented by TT

Example of POS:

In POS form (B+CO)(A+B)(B+0)

BC

My my m3 m; l_[m(1’3'2)
0 0o |0 0
m, ms my Mg
1
Result of (B+C)(A+B)(B+C)is (A+C)(A+B)

Steps for Minimization using K-Map
1. Draw the K-map grid (2, 3, or 4 variables).
2. Fill the cells with output values (1 for minterms, 0 otherwise).
3. Group adjacent 1’s in powers of 2 (1, 2, 4, 8...).
o Groups may wrap around edges.
o Larger groups - more simplification.
4. Write simplified expression from groups.
1. 2-Variable K-Map

Format:

A\B0 |1

0 F(0)||F(1)

1 F(2)|F(3)

Example:
Given function F(A,B)=Zm(1,3)

K-map:

A\Bllo/1
o |[of1]
1 [oll1

Group the 1’s in column (B=1).
Simplified Expression:

F=B

2. 3-Variable K-Map

Format (Gray Code):

A\BC|00/01/11|10

Example:
Given F(A,B,C)=2m(1,2,3,5,7)

Fill K-map:

A\BC|(00/0111(10

o
°J
[
[EY
=

°|
=
~
°

(7 Grouping:

e (m1,m3,m5m7)—>B
e (m2,m3) > AC

Simplified Expression:

F=B+A'C

3. 4-Variable K-Map

Format (Gray Code order for rows & columns):

AB\ CD||00/0111(10

00

01

11

10

Example:

Given F(A,B,C,D)=xm(0,2,5,7,8,10,13,15)

Fill K-map:
AB\cD|00[01/11//10]
00 |1fofolr]
01 Jo1f1]o]
11 Jo o o [1]
10 |1 oo 1]

Grouping: -

« (MO0,m2,m8,m10) > A'C’

e« (M5m7,m13,m15) > AC

« (m10,m15) > BD
Simplified Expression:

F=A'C'+AC+BDF = A'C' + AC + BDF=A'C'+AC+BD

5. Explain the working of Half Adder and Full Adder with truth tables and logic diagrams.

Half adder adds two binary digits where the input bits are termed as augend and addend and the
result will be two outputs one is the sum and the other is carry. To perform the sum operation, XOR

is applied to both the inputs, and AND gate is applied to both inputs to produce carry.

Half-
Adder

B ————p r=====P Carry ‘C]

HA Functional Diagram

Whereas in the full adder circuit, it adds 3 one-bit numbers, where two of the three bits can be
referred to as operands and the other is termed as bit carried in. The produced output is 2-bit

output and these can be referred to as output carry and sum.

By using a half adder, you can design simple addition with the help of logic gates.

Let's see an example of adding two single bits.

The 2-bit half adder truth table is as below:

INPUTS OUTPUTS
A | B SUM CARRY
0 | 0 0 0
0 | 1 1 0
1 S |0 1 —e—
= 1 | 1 0) (e
Half Adder Truth Table
0+0=0
0+1 =1
1+0 =1
1+1 =10

These are the least possible single-bit combinations. But the result for 1+1 is 10, the sum result

must be re-written as a 2-bit output. Thus, the equations can be written as

0+0=00
0+1=01

1+0=01
1+1=10

The output ‘1’of ‘10’ is carry-out. ‘SUM’ is the normal output and ‘CARRY’ is the carry-out.

Now it has been cleared that a 1-bit adder can be easily implemented with the help of the XOR
Gate for the output ‘SUM’ and an AND Gate for the ‘Carry’.

For instance, when we need to add, two 8-bit bytes together, then it can be implemented by using a

full-adder logic circuit. The half-adder is useful when you want to add one binary digit quantities.

A way to develop two-binary digit adders would be to make a truth table and reduce it. When you
want to make a three binary digit adder, the half adder addition operation is performed twice. In a
similar way, when you decide to make a four-digit adder, the operation is performed one more
time. With this theory, it was clear that the implementation is simple, but development is a time

taking process.
The simplest expression uses the exclusive OR function:
Sum=A XORB

Carry=AANDB

C

HA Logical Diagram

And an equivalent expression in terms of the basic AND, OR, and NOT is:

SUM=A.B+A.B’

Full Adder

This adder is difficult to implement when compared to half-adder.

A ———Pp = emeea- p Sum'S’
B ——p Full-
Adder
Carny-in c———p b o 0 o 0 p Carry OUT

Full Adder Functional Diagram

The difference between a half-adder and a full-adder is that the full-adder has three inputs and two
outputs, whereas half adder has only two inputs and two outputs. The first two inputs are A and B
and the third input is an input carry as C-IN. When a full-adder logic is designed, you string eight of

them together to create a byte-wide adder and cascade the carry bit from one adder to the next.

Full Adder Truth Table
The output carry is designated as C-OUT and the normal output is represented as S which is ‘SUM’.

With the above full adder truth-table, the implementation of a full adder circuit can be understood

easily. The SUM ‘S’ is produced in two steps:
1. By XORing the provided inputs ‘A" and ‘B’
2. The result of A XOR B is then XORed with the C-IN

This generates SUM and C-OUT is true only when either two of three inputs are HIGH, then the C-
OUT will be HIGH. So, we can implement a full adder circuit with the help of two half adder circuits.
Initially, the half adder will be used to add A and B to produce a partial Sum and a second-half
adder logic can be used to add C-IN to the Sum produced by the first half adder to get the final S

output.

If any of the half adder logic produces a carry, there will be an output carry. So, C-OUT will be an OR
function of the half-adder Carry outputs. Take a look at the implementation of the full adder circuit

shown below.

XOR
B XOR S

Cin

AND

OR Cout

AND

Full Adder Logical Diagram

The implementation of larger logic diagrams is possible with the above full adder logic a simpler
symbol is mostly used to represent the operation. Given below is a simpler schematic

representation of a one-bit full adder.

With this type of symbol, we can add two bits together, taking a carry from the next lower order of
magnitude, and sending a carry to the next higher order of magnitude. In a computer, for a multi-
bit operation, each bit must be represented by a full adder and must be added simultaneously.
Thus, to add two 8-bit numbers, you will need 8 full adders which can be formed by cascading two

of the 4-bit blocks.

6. Explain Half Subtractor and Full Subtractor with truth tables and logic diagrams.

A Half Subtractor is a combinational circuit that subtracts one binary digit (bit) from another,
producing a difference and a borrow-out. It takes two inputs: the minuend (A) and the
subtrahend (B), and generates two outputs: the Difference (D) and the Borrow-out (Bo).

Operation
The Half Subtractor performs the operation A - B. The outputs are:
« Difference (D): The result of the subtraction.
« Borrow-out (Bo): Indicates if a borrow is needed from the next higher bit.

Truth Table
The truth table for a Half Subtractor is as follows:
A B Difference (D) Borrow-out (Bo)
0 0 0 0
0 1 1 1
1 0 1 0

Explanation:
Difference (D): D = A @ B (XOR of A and B).
Borrow-out (Bo): Bo=-A A B (NOT A AND B).

Difference

I: Borrow

A Full Subtractor is a combinational circuit that subtracts one binary digit from another while
also accounting for a borrow-in from the previous stage. It takes three inputs: the minuend
(A), the subtrahend (B), and the borrow-in (Bin), and produces two outputs: the Difference
(D) and the Borrow-out (Bo).

Operation

The Full Subtractor performs the operation A - B - Bin. The outputs are:
Difference (D): The result of the subtraction.

Borrow-out (Bo): Indicates if a borrow is needed for the next higher bit.
Truth Table

The truth table for a Full Subtractor is as follows:

A B Bin Difference (D) Borrow-out (Bo)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0

1 1 1 1 1

Explanation:
« Difference (D): D=A @ B @ Bin (XOR of A, B, and Bin).
« Borrow-out (Bo): Bo=-AABV-AABinV B A Bin.
Logic Expressions
« Difference:D=A & B & Bin
o Borrow-out: Bo=-AABV-AABInVBABIn

A N\
]) A\

A L »d b

m

Full -[>o—
B Subtractor

(N —* b

Block Diagram {>c D—

7. Explain multiplexer and demultiplexer with truth tables and logic diagrams.

The multiplexer is a device that has multiple inputs and single line output. The select lines
determine which input is connected to the output, and also increase the amount of data that

can be sent over a network within a certain time. It is also called a data selector.

The single-pole multi-position switch is a simple example of a non-electronic circuit of the
multiplexer, and it is widely used in many electronic circuits. The multiplexer is used to perform

high-speed switching and is constructed by electronic components.

X0
X1
—] e Y

X I Multiplexer

1 Single
Many i output
Inputs

I
h{;

C1 CoO

https://www.elprocus.com/step-step-guide-build-electronic-circuit/
https://www.elprocus.com/basic-components-used-electronics-electrical/

Multiplexer

Multiplexers are capable of handling both analog and digital applications. In analog applications,
multiplexers are made up of relays and transistor switches, whereas in digital applications, the
multiplexers are built from standard logic gates. When the multiplexer is used for digital

applications, it is called a digital multiplexer.

Multiplexer Types
Multiplexers are classified into four types:
o 2-1 multiplexer (1select line)
o 4-1 multiplexer (2 select lines)
« 8-1 multiplexer(3 select lines)
o 16-1 multiplexer (4 select lines)
4-to-1 Multiplexer

The 4X1 multiplexer comprises 4-input bits, 1- output bit, and 2- control bits. The four input bits are
namely 0, D1, D2, and D3, respectively; only one of the input bits is transmitted to the output. The
o/p ‘q’ depends on the value of control input AB. The control bit AB decides which of the i/p data
bit should transmit the output. The following figure shows the 4X1 multiplexer circuit diagram using
AND gates. For example, when the control bits AB =00, then the higher AND gates are allowed while

[

remaining AND gates are restricted. Thus, data input DO is transmitted to the output ‘q

>
o

i

4X1 Mux

If the control input is changed to 11, then all gates are restricted except the bottom AND gate. In
this case, D3 is transmitted to the output, and g=DO. If the control input is changed to AB =11, all
gates are disabled except the bottom AND gate. In this case, D3 is transmitted to the output, and q
= D3. The best example of a 4X1 multiplexer is IC 74153. In this IC, the o/p is the same as the i/p.
Another example of a 4X1 multiplexer is IC 45352. In this IC, the o/p is the compliment of the i/p

De-multiplexer is also a device with one input and multiple output lines. It is used to send a signal
to one of the many devices. The main difference between a multiplexer and a de-multiplexer is that

https://www.elprocus.com/digital-timer-circuit-diagram-and-its-working/
https://www.elprocus.com/basic-logic-gates-with-truth-tables/

a multiplexer takes two or more signals and encodes them on a wire, whereas a de-multiplexer
does reverse to what the multiplexer does.

YO
Y1
—_— Y2
De-Multiplexer I
X o
Single I
output I Many
I O/Ps
I
—l YN
¢1 co Demultiplexer

Types of Demultiplexer

Demultiplexers are classified into four types

1-4

1-2 demultiplexer (1 select line)

1-4 demultiplexer (2 select lines)
1-8 demultiplexer (3 select lines)
1-16 demultiplexer (4 select lines)

Demultiplexer

The 1-to-4 demultiplexer comprises 1- input bit, 4-output bits, and control bits. The 1X4
demultiplexer circuit diagram is shown below.

A B
[.
JATA T Y
=
l _JV.‘-:'— Y4
=P =7
J'__":'-' ——
L "~ 1X4 Demux

The i/p bit is considered as Data D. This data bit is transmitted to the data bit of the o/p lines, which

dep

ends on the AB value and the control i/p.

When the control i/p AB = 01, the upper second AND gate is permitted while the remaining AND
gates are restricted. Thus, only data bit D is transmitted to the output, and Y1 = Data.

If the data bit D is low, the output Y1 is low. IF data bit D is high, the output Y1 is high. The value of
the output Y1 depends upon the value of data bit D, the remaining outputs are in a low state.

If the control input changes to AB = 10, then all the gates are restricted except the third AND gate
from the top. Then, data bit D is transmitted only to the output Y2; and, Y2 = Data. . The best
example of 1X4 demultiplexer is IC 74155.

8. Explain decoder and encoder with examples.

An encoder in digital electronics is a combinational circuit that has 2 to the power n inputs
and n outputs. The encoder produces a #binary code equivalent to the given input. The
#encoder encodes information from 2”n inputs to n outputs.

2% Inputlines

N Outputlines

>
>
—_—
| > Encoder :
| i
|
> —>

Block Diagram of Encoder

Types of Encoders:
4 to 2 line encoder:

4 can be written as 22 so the inputs are 4 and the outputs are 2. Let the outputs be A1 and A0 and the
inputs be Y3, Y2, Y1, YO. At any time any one of the inputs will be 1 and the respective Binary code will
be the output.

; .t
Y N 4to2 1

Encoder |—5 A~

https://www.learnelectronicsindia.com/electronics-blogs/hashtags/binary
https://www.learnelectronicsindia.com/electronics-blogs/hashtags/encoder

Block Diagram of 4 to 2 Encoder

The following is the truth table of 4 to 2 encoder

INPUTS OUTPUTS
Y3 Y2 Y1 YO Al A2
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

The logical expressions for A1 and AO are
Al=Y3+Y2
A0O=Y3+Y1

A decoder in digital electronics is a combinational circuit that has n inputs and 2 to the power of n
outputs. The output of the decoder is a maximum of 2”n unique output lines. The binary
information from n input lines is converted to a maximum of 2”n unique output lines in the

decoder. The operation of decoder is reverse to that of encoder.

—

0 Data e
Inputs

n:2n
Decoder

ll l

Enable
Inputs

Block Diagram of Encoder

https://www.learnelectronicsindia.com/electronics-blogs/hashtags/decoder

Types of Decoders:

2 to 4 decoder:

The 2 to 4 decoder has 2 input and 4 output lines. Let the inputs be A1 and A0 and the outputs be
Y3, Y2, Y1, YO. The following is the block diagram of 2 to 4 decoder

e3> Y3
Al ——m— 2t04 > Y2
AO Decoder > Y1

e3> Y0

t

When the enable pin is set i.e., when E=1, for each input combination given at input lines one of

the outputs will be high.

The following is the truth table of 2 to 4 decoder

Enable Input Output
E Al A0 Y3 Y2 Y1l YO
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

The Boolean expressions for each output can be written from the above truth table as follows

Y3 = E.AL.AO
Y2 = E.A1.(AO)'
Y1=E.(A1).A0

YO = E.(A1)'.(AO)'

The above Boolean functions can be implemented using logic gates as follows

p
>
-

Y3

~ T

Y2

Y1

YO

el

9. What is a Flip-Flop? Explain SR, JK, D, T, and Master-Slave Flip-Flops with diagrams and

truth tables.

A flip-flop is a fundamental sequential logic circuit with two stable states that can store a
single bit of binary data (0or 1).It is controlled by input signals and a clock pulse and is used
in memory and other digital systems. The main types are SR, JK, D, and T, along with the

Master Slave variation, each with its own truth table and logic.

SR (Set-Reset) flip-flop
The SR flip-flop is one of the simplest sequential logic circuits, constructed from two cross-

coupled NOR or NAND gates. It has two inputs, Set (S) and Reset (R), and two

complementary
outputs, Q and Q'.

Logic Diagram using NOR gates

Truth Table
S R (0 Comments
0 0 Q, Hold State: Retains previous value.
0 1 0 Reset State: The Q output becomes O.
1 0 1 Set State: The Q output becomes 1.
1 1 Invalid Invalid State: Creates an unpredictable and unstable output, so this
input combination must be avoided.
1 =
() — — R (resect)
Ot}
K B
1 F ——
—)’
0 — _— S (set) —D ¢
JK flip-flop

The JK flip-flop is a refined version of the SR flip-flop that overcomes the invalid output state
when both inputs are high. When both J and K are 1, the output "toggles" or inverts its state on
the next clock pulse.

Logic Diagram

Truth Table
J K Qon+1 Comments
0 0 Qn Hold State: Retains previous value.
0 1 0 Reset State: The Q output becomes 0.
1 0 1 Set State: The Q output becomes 1.
1 1 Q, Toggle State: The output switches to its complement.

CLK —

T
K — D —

Ol

P11 Q
>

D (Delay) flip-flop

The D flip-flop, or Data flip-flop, stores the value of the single Data (D) input at a specific point
in time and outputs it to Q. It is often used in shift registers and memory units.

Logic Diagram

Truth Table
D Qn+1 Comments
0 0 Reset State: The output Q is 0 on the clock edge.
1 1 Set State: The output Q is 1 on the clock edge.

Q

D= >»— Q
>

CLK

D Flip-Flop Circuit

T (Toggle) flip-flop

The T flip-flop is a simplified version of the JK flip-flop created by connecting the J and K inputs
together. It has a single T input, which controls whether the flip-flop holds its state or toggles it.
Logic Diagram

Truth Table
T Qn+l1 Comments
0 Qn Hold State: Retains the previous value.

1 Q, Toggle State: The output switches to its complement.

o I, —

T

U

T Flip Flop Circuit

Master-Slave flip-flop

The master-slave configuration is a method of building a flip-flop by connecting two latches in a

series. It is most commonly used for JK flip-flops to prevent the "race-around condition," where

the output continuously toggles when J=K=1 and the clock pulse is high.

A master-slave flip-flop consists of two stages:

« Master Stage: A master flip-flop is enabled by the rising edge of the clock pulse and stores
the input data.

« Slave Stage: A slave flip-flop is enabled by the falling edge of the clock pulse (an inverted
signal) and transfers the data from the master to the final output.

Logic Diagram

Truth Table (for a Master-Slave JK flip-flop)
J K Qn+l1 Comments

0 0 Q, Hold State: Retains previous value.
0 1 0 Reset State: The Q output becomes 0.
1 0 1 Set State: The Q output becomes 1.
1 1 Q, Toggle State: The output switches to its complement.
‘Master” "Slave”
Flip-flop Flip-flap
Sel L J Q . Q 0 Q
Clock Clk > Clk
Resat K Q : K Q »10)
LIK Clk

10.Write the characteristic equations and characteristic tables of SR, JK, D, and T flip-flops and

Explain conversion of flip-flops (SR to JK, JK to D, D to T, etc.) with proper methods.

Characteristic Equations and Tables of Flip-Flops

In digital electronics, flip-flops are fundamental sequential circuits used for storing binary
data.

The characteristic table describes the next state (Q_{n+1}) based on the current state (Q_n)
and inputs.

The characteristic equation mathematically expresses Q_{n+1} in terms of inputs and Q_n
(where ' denotes NOT, + denotes OR, and juxtaposition or - denotes AND).

Below, | provide the characteristic tables and equations for SR, JK, D, and T flip-flops. These
assume edge-triggered behavior with a clock signal, but the tables focus on the logical
operation (ignoring clock for simplicity).

1. SR Flip-Flop

Inputs: S (Set), R (Reset)

Behavior: Sets output to 1 when S=1 and R=0; resets to 0 when S=0 and R=1; holds state
when S=R=0; invalid (race condition or undefined) when S=R=1.

Characteristic Table:

S R Q. n Q_{n+1}

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 Undefined
1 1 1 Undefined

Characteristic Equation: Q_{n+1} =S + R' Q_n (valid only when S-R = 0; undefined
otherwise).

2. JK Flip-Flop

Inputs: J, K

Behavior: Similar to SR, but toggles when J=K=1; no invalid state.

Characteristic Table:

J K Q. n Q_{n+1}
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1

1 1 0 1

1 1 1 0
Characteristic Equation: Q_{n+1}=JQ_n'+K'Q_n
3. D Flip-Flop

Input: D (Data)
Behavior: The next state directly follows the D input; used for data storage.
Characteristic Table:

D Q_n Q_{n+1}

0 0 0

0 1 0

1 0 1

1 1 1
Characteristic Equation: Q_{n+1}=D
4. T Flip-Flop

Input: T (Toggle)
Behavior: Holds state when T=0; toggles when T=1.
Characteristic Table:

T Q_n Q_{n+1}
0 0 0
0 1 1
1 0 1
1 1 0

Characteristic Equation: Q_{n+1}=T@ Q n=T'Q_n+TQ_n'

Conversion of Flip-Flops

Flip-flop conversion involves modifying one type of flip-flop (source) to behave like another
(target) by adding combinational logic (gates) to its inputs. This is useful when only certain
flip-flops are available in hardware.

General Method for Conversion

1. Identify Characteristic Equations: Use the equations of both source and target flip-flops.

2. Create a Conversion Table: List all possible combinations of the target's inputs and current

state Q_n. For each, compute the desired Q_{n+1} from the target's characteristic equation.
. Determine Source Inputs: For each row, find the source flip-flop's input values that produce
the same Q_{n+1} given Q_n.

. Minimize Logic: Use Karnaugh maps (K-maps) or Boolean algebra to express the source
inputs as functions of the target's inputs and Q_n.

. Implement Circuit: Connect the logic gates to the source flip-flop's inputs. The clock and Q
output remain the same.

Below, | explain common conversions (SR to JK, JK to SR, JKto D, Dto JK, JKto T, T to JK, D to
T, Tto D, SR to D, D to SR) with the derived logic expressions. For each, I'll provide the

conversion table and minimized expressions. (Diagrams would show gates connected to
inputs; e.g., for JK to D, an inverter from D to K.)

1. SR to JK (Convert SR Flip-Flop to Act Like JK)

Target: JK (Q_{n+1}=JQ_n"+K'Q_n)

Source: SR (Q_{n+1}=S+R'Q_n)

Conversion Table (Inputs: J, K, Q_n; Desired Q_{n+1}; Find S, R):

J K Q. n Desired Q_{n+1} S R
0 0 0 0 0 X
0 0 1 1 X 0
0 1 0 0 0 X
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 X 0
1 1 0 1 1 0
1 1 1 0 0 1
Minimized Expressions (using K-map):
o S=J Q_n'
o R=KQ_n

Circuit: AND gate for S (J and Q_n'), AND gate for R (K and Q_n). Connect to SR inputs.
2. JK to SR (Convert JK to Act Like SR)

Target: SR (Q_{n+1}=S+R'Q_n)

Source: JK(Q_{n+1}=JQ_n"+K'Q_n)

Conversion Table (Inputs: S, R, Q_n; Desired Q_{n+1}; Find J, K; avoid S=R=1 invalid):

S R Q. n Desired Q_{n+1} J K
0 0 0 0 0 X
0 0 1 1 X 0
0 1 0 0 0 X
0 1 1 0 0 1
1 0 0 1 1 X
1 0 1 1 X 0
1 1 - Invalid - -
Minimized Expressions:
o J=S
o K=R

Note: JK naturally avoids SR's invalid state. No extra gates needed if invalid is ignored, but add

logic like AND(NOT S, R) if strict.

3. JK to D (Convert JK to Act Like D)

Target: D (Q_{n+1}=D)

Source: JK

Conversion Table:
D Q. n Desired Q_{n+1} J
0 0 0 0
0 1 0 0 1

X R

1 0 1 1 X
1 1 1 X 0
Minimized Expressions:

o J=D
o K=D'
Circuit: Connect D directly to J; invert D to K (using NOT gate).
4. D to JK (Convert D to Act Like JK)
Target: JK
Source: D (Q_{n+1}=D)
Conversion Table:

J K Q. n Desired Q_{n+1} D
0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 0 0
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

Minimized Expression: D=J Q_n'+K'Q_n

Circuit: Use OR gate with two AND gates: (J AND Q_n') OR (K' AND Q_n).
5.JK to T (Convert JK to Act Like T)

Target: T (Q_{n+1}=T @ Q_n)

Source: JK

Conversion Table:

T Q. n Desired Q_{n+1} J K
0 0 0 0 X
0 1 1 X 0
1 0 1 1 X
1 1 0 0 1
Minimized Expressions:
o J=T
o K=T

Circuit: Connect T to both J and K (no extra gates).
6. T to JK (Convert T to Act Like JK)

Target: JK

Source: T(Q_{n+1}=T & Q_n)

Conversion Table:

J K Q_n Desired Q_{n+1} T
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1

1 0 0 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 1

Minimized Expression: T=JQ_n'+K Q_n

Circuit: OR gate with two AND gates: (J AND Q_n') OR (K AND Q_n).
7.D to T (Convert D to Act Like T)

Target: T

Source: D

Conversion Table:

T Q_n Desired Q_{n+1} D
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Minimized Expression: D=T @ Q_n

Circuit: XOR gate between T and Q_n connected to D input.
8. T to D (Convert T to Act Like D)

Target: D

Source: T

Conversion Table:

D Q.n Desired Q_{n+1} T
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Minimized Expression: T=D @ Q_n
Circuit: XOR gate between D and Q_n connected to T input.

9. SR to D (Convert SR to Act Like D)
Target: D

Source: SR

Conversion Table:

D Q. n Desired Q_{n+1} S R
0 0 0 0 X
0 1 0 0 1
1 0 1 1 0
1 1 1 X 0
Minimized Expressions:
o S=DQ_n'

o R=D"'Q_n (orsimply R=D')
Circuit: AND for S (D and Q_n'), AND for R (D' and Q_n) or direct inverter if simplified.
10. D to SR (Convert D to Act Like SR)

o Target: SR
e Source: D
« Conversion Table (avoiding S=R=1):
S Q_n Desired Q_{n+1}

R P OOOoOo
oOrRr PRrOoOOm
Or Or o
R OO RO

R R, OOPRrR OOD

0 1 1

« Minimized Expression: D=S+R'Q_n

o Circuit: OR gate between S and (R' AND Q_n).
These conversions ensure the source flip-flop mimics the target. For hardware, use gates like
AND, OR, NOT, XOR as described. If implementing in FPGA or simulation, verify with timing
considerations.

11.Explain the difference between edge triggering and level triggering with diagrams.

In digital electronics, edge triggering and level triggering are mechanisms that determine
when a flip-flop or latch responds to input signals, typically controlled by a clock or enable
signal. These concepts are fundamental to sequential circuits, governing how data is
captured and stored. This document explains the differences between edge triggering and
level triggering, their characteristics, and provides textual descriptions of timing diagrams to

illustrate their behavior.

Edge triggering occurs when a flip-flop responds to input changes only at a specific transition
(or “edge”) of the clock signal, either the rising edge (low-to-high) or the falling edge (high-to-

low). The circuit ignores input changes during the rest of the clock cycle.

Edge triggering occurs when a flip-flop responds to input changes only at a specific transition
(or “edge”) of the clock signal, either the rising edge (low-to-high) or the falling edge (high-to-

low). The circuit ignores input changes during the rest of the clock cycle.

Key Differences Between Edge Triggering and Level Triggering

Feature Edge Triggering Level Triggering

Activation Triggered at the rising or falling edge of Triggered during the entire high or

the clock. low clock level.
Timing Narrow (only at the edge). Wide (entire duration of the active
Window level).
Circuit Type Typically flip-flops (e.g., D, JK). Typically latches (e.g., SR, D).
Stability Less prone to glitches, suitable for More prone to glitches, used in
synchronous systems. simpler circuits.
Output Output changes only at the clock edge. Output follows input during active
Behavior clock level.
Applications Synchronous counters, registers, CPUs. Data latches, asynchronous circuits.

12.What is a register? Explain classification of registers and working of a shift register with

diagrams.

A register is a fundamental component in digital electronics, consisting of a group of flip-flops
used to store multiple bits of data temporarily during processing in a digital system. Each flip-
flop in a register stores one bit, so an n-bit register comprises n flipflops. Registers are
essential in CPUs, memory units, and other digital circuits for tasks such as:

e Storing intermediate results during computations.
* Holding data for processing or transfer.
e Performing operations like shifting or counting.

For example, a 4-bit register can store a 4-bit binary number (e.g., 1011) using four flip-flops,
typically D flip-flops, synchronized by a clock signal.

Classification of Registers :-
Registers are classified based on how data is entered and retrieved. The main types are:

1. Serial-In Serial-Out (SISO) Register: Data is entered and retrieved sequentially, one bit at a
time. Used in serial data communication.

1
o'ol

Serial Input 1 0 1 D
B Q B Q o Q Q Serial
Output
Flip Flop 1 Flip Flop 2 Flip Flop 3 Flip Flop 4

Clock

2. Serial-In Parallel-Out (SIPO) Register: Data is entered serially but retrieved in parallel (all
bits simultaneously). Useful for serial-to-parallel data conversion.

Parallel Output

Serial Input = T D Q T D 0 T D Q ___.T

Flip Flop 1 Flip Flop 2 Flip Flop 3 Flip Flop 4

Clock

Clear

3. Parallel-In Serial-Out (PISO) Register: Data is entered in parallel but retrieved serially.
Used for parallel-to-serial data conversion.

Parallel Input

Shift | |
> l
. =il H
L L) () () J U
D Q | D Qi L D Q D Q
Serial Output
Flipflop 1 Flip flop 2 S Flip flop i Flip flop 4
Clock -
4. Parallel-In Parallel-Out (PIPO) Register: Data is both entered and retrieved in parallel.
Commonly used for temporary storage in processors.
I_ D Q |- I_ D Q |- l_ D Q |= I_ D Q
Flip Flop 1 Flip Flop 2 Flip Flop 3 Flip Flop 4
= =4 — —
Clock

Parallel Output

5. Universal Shift Register: A versatile register that can operate as SISO, SIPO, PISO, or PIPO
based on control inputs, supporting operations like left or right shifting.

Working of a Shift Register :-

A shift register is a type of register that shifts its stored data left or right by one bit position
with each clock pulse. It is used in applications like data serialization, deserialization, and
delay lines. This section explains the working of a Serial-In Serial-Out (SISO) shift register as
an example.

Components of a SISO Shift Register:-

e Flip-Flops: Typically D flip-flops, each storing one bit.
e Clock Signal: Synchronizes the shifting process.

e Serial Input: The input data bit.

e Serial Output: The output data bit.

Operation :-

The SISO shift register consists of flip-flops connected in a chain, where the output of one flip
flop feeds into the input of the next. Data is entered serially, shifted through the flip-flops with

each clock pulse, and output serially. The steps are:

1. Initialization: All flip-flops are reset (e.g., to 0).
2. Data Input: A single bit is input to the first flip-flop at each clock pulse.
3. Shifting: With each clock pulse, data shifts to the next flip-flop.
4. Output: After n clock pulses (for an n-bit register), data appears at the output.
Example:-
Consider a 4-bit SISO shift register with input data 1010:
* Initial State: Q3 Q2 Q1 QO = 0000.
e Clock 1: Input = 1, Register = 1000.
e Clock 2: Input = 0, Register = 0100.
e Clock 3: Input = 1, Register = 1010.

e Clock 4: Input = 0, Register = 0101.

e Clock 5: Output starts, first bit (1) appears,

Register = 0010. After 8 clock pulses, the data 1010 is output serially

13.What is a counter? Differentiate between asynchronous (ripple) and synchronous counters

with examples.

In digital electronics, a counter is a sequential logic circuit that consists of a series of flip-flops. As
the name suggests, counters are used to count the number of occurrences of an input in terms of

negative or positive edge transitions.

Based on the way the flip-flops are triggered, counters can be grouped into two categories:

Synchronous counters and Asynchronous counters.

Here we will discuss how these two types of counters function and how they are different from

each other.
Synchronous Counter

If the clock pulses are applied to all the flip-flops in a counter simultaneously, then such a counter is

called as synchronous counter.

« Inasynchronous counter, all the constituting flip-flops are clocked with the same clock input

simultaneously. These are also known as parallel counters.

« Basically, all the flip-flops in a synchronous counter are arranged in a cascade connection and
each flip-flop is individually connected to an external clock. It allows the clocking of all the
flip-flops at the same time instant with the same clock input. It means the output of each flip-

flop varies in synchronization with the clock input.

« Due to this, the common clock signal causes the change in the state of each individual flip-
flop simultaneously. Resultantly it leads to no ripple effect, thus there is no propagation delay

in a synchronous counter.
» Logic gates are used in synchronous counters to control the count sequence.

Asynchronous Counter

https://www.tutorialspoint.com/digital-electronics/digital-electronics-counters.htm
https://www.tutorialspoint.com/digital-electronics/digital-electronics-flip-flops.htm

Asynchronous counters are also known as serial counters because the flip-flops that constitute the

counter are connected serially and the input clock pulse is provided to the first flip-flop in the

connection.

o The output of the first flip-flop acts as the input of the next adjacent flip-flop in the forward

direction. In this manner, the clock input ripples through the counter. Hence, these counters

are also known as ripple counters.

« Due to the ripple effect, the timing signal in an asynchronous counter gets delayed by some

amount on passing through each flip flop. Hence, it results in a propagation delay.

Difference Between Synchronous and Asynchronous Counters

The following table highlights the major differences between Synchronous and Asynchronous

Counters.
Key Synchronous Counter Asynchronous Counter
In case of Synchronous Counters, all the In case of Asynchronous Counters,
Trigger constituent flip-flops are triggered with there is triggering of different flip-
same clock simultaneously. flops with different clock.
The operation speed of an
Operation speed of a synchronous
Operation asynchronous counter is
counter is faster as compared to that of
Speed comparatively slower than a

an asynchronous counter.

synchronous counter.

Error Prone

Synchronous Counters are less error-
prone; they hardly produce any decoding
errors because each flip-flop is

individually clocked.

Asynchronous Counters are more
error-prone and produce decoding

errors in the system.

Complexity

All the flip-flops in a synchronous counter
coordinate with the clock, hence its

design and implementation is complex as

In an asynchronous counter, the
output of one flip-flop acts as the

input of the next flip-flop, hence its

compared to that of an asynchronous design and implementation is quite

counter. simple.

A Synchronous counter can be operated
An Asynchronous counter can operate
in any desired count sequence, as it could
Sequence only in a fixed count sequence, i.e.,
get manipulated by changing the clock
UP and DOWN.
sequence.

In case of asynchronous counters,
There is no propagation delay observed in
Delay there is a subsequent propagation
case of Synchronous Counters.
delay from one flip-flop to another.

14.Explain the basic cell organization of static RAM (SRAM) and dynamic RAM (DRAM) with

diagrams.

RAM stands for Random Access Memory. It is the internal memory of the CPU for storing data,
program, and program result. It is a read/write memory which stores data until the computer is
working. As soon as the computer is switched off, data is erased. Therefore, RAM is a volatile
memory.

SRAM stands for Static Random Access Memory. Each memory cell of SRAM is made up of
a flip-flop, a 1-bit storage device. SRAM uses a matrix of 6 transistors. In this memory circuit,
capacitors are not used. Thus, in SRAM, there is no data leakage, so SRAM need not be refreshed

regularly.

SRAM is a high speed random access memory which is used in special applications such as cache
memory in computers and other embedded systems. However, SRAM is relatively expensive
because it uses comparatively more number of chips that increase its manufacturing cost. SRAM is
a volatile memory which means it retains the stored data as long as the power is supplied to the

computer.

https://www.tutorialspoint.com/computer_fundamentals/computer_cpu.htm
https://www.tutorialspoint.com/computer_fundamentals/computer_ram.htm
https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm

DRAM stands for Dynamic Random Access Memory. Each memory cell of DRAM is made up of

one transistor and one capacitor. In DRAM, the data and information is stored in the form of an

electric charged on the capacitor. Since capacitor loses its data (charge), thus DRAM must be

continually refreshed several hundred times per second to maintain the data.

DRAM is a small sized and less expensive type of RAM. For this reason, it is used as RAM in most

computer systems. However, DRAM is relatively slower and has a short data life than SRAM.

of transistors.

Parameter SRAM DRAM

SRAM stands for Static Random Access | DRAM stands for Dynamic Random
Full Form

Memory. Access Memory.

SRAM stores information with the help
Component DRAM stores data using capacitors.

Need to Refresh

In SRAM, capacitors are not used which

means refresh is not needed.

In DRAM, contents of a capacitor

need to be refreshed periodically.

SRAM provides faster speed of data

DRAM provides slower speed of

computer and other computing devices.

Speed
read/write. data read/write.
Power
SRAM consumes more power. DRAM consumes less power.
Consumption
Data Life SRAM has long data life. DRAM has short data life.
Cost SRAM are expensive. DRAM are less expensive.
Density SRAM is a low density device. DRAM is a high density device.
SRAMs are used as cache memory in DRAMs are used as main memory
Usage

in computer systems.

https://www.tutorialspoint.com/basic_electronics/basic_electronics_transistors.htm
https://www.tutorialspoint.com/basic_electronics/basic_electronics_capacitors.htm

15.What is cache memory? Explain cache memory organization and virtual memory

organization with examples.

Cache memory increases the access speed of the CPU. It is not a technique but a memory unit,
i.e. a storage device. In cache memory, recently used data is copied. Whenever the program is ready
to be executed, it is fetched from the main memory and then copied to the cache memory. But, if
its copy is already present in the cache memory, then the program is directly executed.

Virtual Memory increases the capacity of main memory. Virtual memory is not a storage unit, its a
technique. In virtual memory, even such programs which have a larger size than the main memory
are allowed to be executed.

Difference Between Virtual Memory and Cache Memory

Virtual Memory Cache Memory

Virtual memory increases the capacity of main | While cache memory increase the accessing

memory. speed of CPU.

Virtual memory is not a memory unit, its a))
. Cache memory is exactly a memory unit.
technique.

The size of virtual memory is greater than the While the size of cache memory is less than

cache memory. the virtual memory.
Operating System manages the Virtual On the other hand hardware manages the
memory. cache memory.

In virtual memory, the program with size larger | While in cache memory, recently used data is
than the main memory are executed. copied into.

In virtual memory, mapping frameworks is o .
_ .) While in cache memory, no such mapping
needed for mapping virtual address to physical]
frameworks is needed.
address.

https://www.geeksforgeeks.org/operating-systems/virtual-memory-in-operating-system/
https://www.geeksforgeeks.org/computer-organization-architecture/cache-memory-in-computer-organization/

Virtual Memory

Cache Memory

It is not as speedy as cache memory.

It is a fast memory.

Those data or programs are kept here that are
not completely get placed in the main
memory.

The frequently accessed data is kept in cache
memory in order to reduce the access time of
files.

Users are able to execute the programs that

take up more memory than the main memory.

The time required by CPU to access the main
memory is more than accessing the cache.
That is the reason frequently accessed data is
stored in cache memory so that accessing time
can be minimized.

